МИКРОЭЛЕКТРОННЫЕ ОЗУ
Микросхемы статических ОЗУ имеют, как правило, матричную структуру с двухкоординатноп системой адресации (выборки). Общие принципы их построения уже рассмотрены на примере микросхемы К155РУ1. Матричная структура накопителя и двухкоордп-натная система выборки обеспечивают возможность доступа к каждому ЭП. Быстродействующие мпкроэлектрониые ОЗУ формируются на основе биполярных транзисторных элементов ЭСЛ, ТТЛ (ТТЛШ), ИПЛ. Микроэлектронпые ОЗУ среднего и низкого быстродействия строятся на p-МДП, n-МДП и КМДП-транзисторных элементах.
Пример ЭП на многоэмнттерных транзисторах приведен на рис. 5.10. По адресным шинам Хi и YJ, с которыми соединены эмиттеры 2 — 5, поступают сигналы, определяющие режим ЭП: запись в триггер, считывание с его выходов или хранение информации. Режим хранения обеспечивается при поступлении сигналов нулевого уровня на обе адресные шины или на одну из них.
Разрядные шины соединены с эмиттерами 1 и 6. Информационные сигналы подаются через усилители записи и воздействуют на состояние транзисторов Т1 и Т2 только при условии, что оба адресных сигнала равны 1. Допустим записывается 1: Wi=1, W0=0. Поскольку усилители записи имеют инверсный выход, то на единичной разрядной шине будет 0, а на нулевой шине — 1. Этим-и сигналами транзистор Т1 закрывается, а Т2 открывается. При записи 0 состояния транзисторов изменятся на обратные.
В режиме считывания сигналами Wi=W0 — Q на разрядных шинах устанавливаются уровни 1, чтобы выходы усилителей записи не шунтировали входов усилителен считывания. При выборке ЭП входы 2 — 5 закрываются, и ток через транзистор Т2, протекавший в адресные шины, переключится в разрядную шину через эмиттер-ный переход 6. Заметим, что переход 6 останется открытым при ! на разрядной шине благодаря превышению напряжения на коллекторе транзистора Т2 над напряжением единичного уровня разрядной шины.
Рис. 5.10. Элемент памяти на биполярных транзисторах
Рис. 5.11. Элемент памяти на КМДП-структурах
Рис. 5.12. Структура микросхемы статического ОЗУ
В результате срабатывает усилитель считывания и формирует сигнал единичного уровня, на выходе другого усилителя в это время будет сигнал нулевого уровня.
Микросхемы памяти на МДП-транзисторах для ОЗУ статического типа строятся в основном по тем же принципам матричной организации накопителя с двухкоординатноп выборкой. Пример принципиальной схемы ЭП на КМДП-транзисторах приведен на рис. 5.11. Основу ЭП составляет триггер на транзисторах Т1 — T4 Транзистор Т5 выполняет функции ключа, управляемого сигналом на адресной шине строки Xi. Он соединяет триггер с j разрядной шиной, которая совмещает функции информационной и адресной шин столбца. Выборка строки производится сигналом 1 на адресной шине Xi, открывающим транзистор Т5. В результате сигнал с разрядной шины поступает в триггер на вход пары транзисторов Т2, Т4. Допустим, записывается 1, тогда транзистор T2 откроется, а транзистор Т4
— закроется. С выхода транзистора Т2 напряжение низкого уровня (ниже порогового) переводит транзистор Т1 в закрытое, а транзистор T3 — в открытое состояния.
Режим хранения обеспечивается подачей 0 по адресной шине строки, при этом транзистор Т5 закрывается и изолирует триггер от разрядной шины.
При считывании в адресную шину Xi подается сигнал 1, транзистор Ть открывается, и в разрядную шину поступает ток от источника питания через открытый транзистор Тъ. Если в ЭП записан 0, то транзистор Г3 закрыт, а транзистор Т{ открыт, поэтому при обращении к ЭП ток в разрядную шину не поступает.
На рис. 5.12 показана упрощенная структурная схема микросхемы статического ОЗУ К564РУ2, матрица которого состоит из 16X16 КМДП элементов памяти. Организация накопителя 256Х X 1 бит. Для обращения к микросхеме требуется ко входам дешифраторов строк и столбцов подвести восьмиразрядный код адреса, а также сигнал «Выборка микросхемы» (ВМ), разрешающий обращение к накопителю по адресным входам и информационным входу и выходу.
При запрещающем значении сигнала ВМ накопитель изолирован от выходов дешифратора строк и шины ввода — вывода.
Ключи выборки столбцов управляются сигналами с выходов дешифратора У и предназначены для коммутации цепи между выбранным ЭП и шиной ввода — вывода.
Режим микросхемы устанавливается сигналом «Запись — считывание» (3 — С). При единичном уровне сигнала 3 — Си наличии разрешающего сигнала ВМ открыта схема ввода, и информация со входа через шину ввода — вывода и открытый ключ выборки столбца поступает в выбранный ЭП. При считывании сигнал 3 — С имеет нулевой уровень, при котором открывается схема вывода информации на выход микросхемы F. Выходная цепь может принимать одно из трех состояний: открытое F — Q, закрытое F=l и высокоомное, при котором выход отключается от внешней шины. Высокоомное состояние выход имеет при отсутствии разрешающих сигналов ВМ и 3 — С.
Таблица 5.5
Микросхема |
Технология |
Емкость, бит |
Время цикла, НС |
Потребляемая мошность, мкВт/бит |
Статические ОЗУ |
||||
К500РУ410 |
ЭСЛ |
256X1 |
40 |
3-103 |
К134РУ6 |
ИИЛ |
1024X1 |
650 |
300 |
К541РУ1Б |
ИИЛ |
4096X1 |
280 |
130 |
К505РУ2 |
p-МДП |
1024X1 |
700 |
900 |
К505РУ6 |
n-МДП |
1024X1 |
650 |
300 |
К565РУ2 |
n-МДП |
1024X1 |
400 |
400 |
К176РУ2 |
кмдп |
256X1 |
700 |
35 |
К564РУ2 (при U„.!,= |
кмдп |
256XJ |
15СО |
0,4 (при хранении) |
=5 В) |
50 (при обра- |
|||
щении) |
||||
Динамические ОЗУ |
||||
К507РУ1 |
p-МДП |
1024X1 |
600 |
75 |
К565РУ1 |
n-МДП |
4096X1 |
400 |
5 (при хране- |
нии) |
||||
175 (при об- |
||||
К565РУЗ |
n-МДП |
1638X1 |
400 |
ращении) 5 (при хране- нии) 40 (при обра- щении |
Перейдем к рассмотрению устройства и принципа действия микросхем памяти динамического типа. Обычно такие микросхемы изготавливают по МДП-технологии.
Для примера выберем микро схему динамического ОЗУ К565РУ1. Ее упрощенная структурная схема приведена на рис. 5.13, а детализация функциональных узлов одного столбца матрицы — на рис. 5.14.
Рис. 5.13. Структура микросхемы динамического ОЗУ
Микросхема содержит выполненные в одном кремниевом кристалле матрицу-накопитель из 4096 ЭП, расположенных на пересечениях 64 шин строк и 64 шин столбцов, 64 усилителя считывания, два шестиразрядных регистра для хранения кода адреса, два дешифратора с 64 выходами каждый, ключи выборки строк и столбцов, устройство ввода — вывода и устройство управления и синхронизации, включающее четыре формирователя Ф, — Ф4 управляющих сигналов.
Рис. 5.14. Функциональные элементы динамического ОЗУ
Матрица-накопитель разделена на две части по 32x64 ЭП в каждой. Между ними размещены усилители, так что каждый столбец состоит из двух секций, подключенных к разным плечам усилителя (рис. 5.14).
Элемент памяти построен по однотранзисторной схеме и включает конденсатор Cij и транзистор Tij. Транзистор выполняет функции ключа: при сигнале на адресной шине строки Xt — l он открывается и соединяет конденсатор Cij с j-разрядной шиной. Разрядные шины являются информационными и адресными одновременно Выборка j-разрядной шины производится при совпадении выходного сигнала дешифратора Yj — l, открывающего ключи выборки столбца Тj1, и управляющего сигнала Ф3=1, открывающего ключи Тj2. В результате обе шины ввода — вывода соединяются с j-разрядной шиной и таким образом обеспечивается считывание или запись информации.
Микросхема управляется сигналами: кода адреса (а0 ... а11 } тактовым ТС, выборки микросхемы ВА1 и записи — считывания 3 — С (см. рис. 5.13).
Сигналы кода адреса (выборки ЭП) поступают на регистры строк {а0 ... а5} и столбцов {а6 ... а„}. Код адреса выбирает одну из строк t и один из столбцов I, на пересечении которых находится ЭП-ij с требуемым номером.
Сигнал ТС разрешает обращение к матрице по адресным входам.
По его положительному перепаду код адреса записывается в регистры и затем дешифрируется. Одновременно запускается формирователь Ф1, а от него формирователь Ф2. Внутренние сигналы Ф1 и Ф2 управляют последовательностью операций по выбору строки. Сигнал единичного уровня с выхода дешифратора открывает один из ключей выборки строк, через который на соответствующую строку матрицы поступает сигнал Ф1. В результате все ЭП этой строки оказываются подключенными к своим разрядным шинам. Одновременно сигнал Ф1 через селектор на транзисторах Гсь Тс?., который управляется старшим разрядом а5, кода адреса строки, воздействует на одну из опорных строк и подключает к разрядным шинам конденсаторы C0j опорных элементов (назначение опорных элементов поясняется далее).
Сигнал Фа включает усилитель считывания и происходит регенерация информации во всех ЭП выбранной строки. При наличии разрешения по входу ВМ сигнал Ф2 запускает формирователь Ф?, выходным сигналом которого затем запускается формирователь Ф.-,.
Управляющий сигнал Фз, открывая транзисторные ключи 7V, коммутирует цепь, соединяющую шины ввода — вывода с выбранной дешифратором У через ключи Тц разрядной шпион. Сигнал Ф4 открывает схему вывода информации.
По отрицательному перепаду ТС все функциональные узлы микросхемы переходят в исходное состояние, при котором из-за отсутствия разрешающих сигналов Ф1 и Ф3 закрываются ключи выборки строк и столбцов и матрица-накопитель изолируется от всех цепей. Время, необходимое на установление этих процессов определяется одним из временных параметров — минимальной длительностью паузы между ТС.
Сигнал ВМ разрешает обращение к матрице по информационным входу и выходу. При разрешающем сигнале ВМ формируются сигналы Ф3 и Ф4, управляющие составлением цепи от выбранного ЭП до входа или выхода микросхемы. Сигнал 3 — С определяет режим микросхемы: при нулевом уровне — запись, при единичном — считывание. Последовательность поступления на входы микросхемы сигналов кода адреса, ВМ и 3 — С при записи и считывании показана на рис. 5.15,а и 5.15,6 соответственно.
Рассмотрим подробнее процессы при считывании и регенерации информации. Для этого поясним принцип действия усилителя считывания и необходимость его включения в разрыв разрядной шины.
Рис. 5.15. Временные диаграммы сигналов микросхемы динамического ОЗУ: а — при записи; б — при считывании
Разрядная шина обладает собственной емкостью Су (см. рис. 5.14), которая значительно превышает емкость Crj запоминающего конденсатора. Поэтому при подключении ЭПц к разрядной шине изменение ее потенциала, пропорциональное отношению Cij/Cy<l, будет незначительным. Эта особенность динамических ЗУ, построенных на однотранзисторных ЭП, обусловливает необходимость в очень чувствительном усилителе считывания. Такими свойствами обладает дифференциальный усилитель триггерного типа, выполненный на транзисторах Tу1 — Tу4. Введение дифференциального усилителя обусловило необходимость в опорных элементах. Опорный элемент 30 (T0j, C0;) построен по такой же схеме, как и ЭП, но имеет вдвое меньшую емкость конденсатора. Строки ЭО (опорные строки) находятся в разных половинах матрицы. К источнику управляющего сигнала Ф{ через селектор Tcl, Tcz сигналом а$ подключается та из двух опорных строк, которая находится в противоположной относительно выбранной информационной строки половине матрицы.
В паузе между ТС, т. е. при TС — 1, через открытые транзисторные ключи Tпj в каждом столбце происходит разряд Су до напряжения логической единицы U1. С поступлением ТС ключи Tпj закрываются и шина оказывается под напряжением U1. С некоторой задержкой относительно положительного перепада ТС на j-информационную строку и на вторую опорную строку поступает сигнал Ф1= 1. В результате к j-разрядной шине с обеих сторон усилителя подключаются 377,-j и 30,-. Напомним, что этот процесс одновременно происходит на всех разрядных шинах.
С подключением dj и С0;- на секциях j-разрядной шины, т. е. в точках А и В (см. рис. 5.14), устанавливаются потенциалы: UAmax=U1 при ЭПij=1; UAmin=U'a/(a+l) при ЗЯ1,=0; Uв= =Uon-Ul2a/(2a±1), где а=СY/Сij.
Следовательно, изменение потенциала в точке А при подключении ЭП не превышает ДU=UAmах — UA min=U1/(a+l) =Ul/a, что составляет удвоенное значение разности между уровнями UA и Uon: UAтax — Uоп= — (UAmin — Uоп) =АU/2. Таким образом, значение информационного сигнала на одном входе усилителя отсчитывается относительно опорного уровня напряжения на втором. Усилитель настроен на отрабатывание разности входных напряжений UA — Uв=±ДU/2.
При ЭПц = 1 UA>UB, транзистор Tу2 открыт, а транзистор TУ1 закрыт. При включении сигналом Ф2 цепи питания усилителя в точках А и В формируются уровни напряжения 1 и 0 соответственно. Происходит восстановление частично утраченного заряда на конденсаторе Сij (регенерация информации) и одновременно в шину ввода — вывода поступает усиленный считываемый сигнал. На другой секции разрядной шины в это время устанавливается нулевой потенциал.
При ЭПij =0 UA<UB, транзистор Ty1 открыт, а транзистор Tу2 закрыт. При включении питания устанавливаются уровни О в точке А и 1 BS точке В. Через открытый транзистор Ту1 происходит разряд полушины столбца и на запоминающем конденсаторе восстанавливается нулевой потенциал, т. е. регенерируется ранее записанный в ЭПij логический 0.
При выборке ЭЯА,- в разрядной шине происходят аналогичные процессы с тем отличием, что опорный уровень напряжения формируется на полушине А.
Информация в выбранный ЭП записывается путем коммутации информационного входа через шины ввода — вывода на выбранную разрядную шину.
В режиме хранения сигнал ТС отсутствует и матрица отключена от всех окружающих ее цепей.
Рис. 5.16. Устройство регенерации динамического ОЗУ
При построении на микросхемах памяти модуля динамического ОЗУ предусматривается специальный цикл регенерации, который представляет собой цикл считывания по адресу регенерации. Адрес регенерации формируется счетчиком, разрядность которого определяется разрядностью кода адреса строк. Число циклов регенерации равно числу строк в матрице-накопителе.
Поскольку регенерация осуществляется одновременно во всех ЭП выбранной строки, цикл обращения к матрице реализуется при отсутствии разрешающего сигнала ВМ, когда разрядные шины изолированы от дешифратора столбцов и шины ввода — вывода.
Время, необходимое для регенерации одной строки, равно длительности цикла считывания tц.сч (см. рис. 5.15). В это время обращение к микросхеме запрещено. Для регенерации m строк требуется время mtц.сч, что составляет mtЦ.СР/Tper часть от периода регенерации Грег, равного обычно 1 — 2 мс. В частности, для модулей ОЗУ на микросхемах К565РУ1 время занятости на регенерацию составляет 1,3 % общего времени работы ОЗУ.
Необходимое для обеспечения регенерации оборудование включает помимо счетчика мультиплексор, триггер и генератор регенерации (ГР), синхронизированный ТС. Структурная схема устройства регенерации N разрядного модуля ОЗУ приведена на рис. 5.16 [51].
Работает устройство регенерации следующим образом. По сигналу ГР счетчик изменяет свое состояние на очередное и формирует код выборки следующей строки. Триггер устанавливается в состояние V1=l и V2 = 0, при котором мультиплексор коммутирует на входы ОЗУ сигналы кода адреса регенерации {а'0 ... а'5}, и с поступлением сигнала ТС в матрице происходит регенерация информации в ЭП выбранной строки.
С некоторой задержкой относительно положительного фронта ТС, определяемой параметром «время удержания адреса относительно ГС», триггер возвращается в исходное состояние по входу установки 0 сигналом, формируемым устройством управления (на рис. 5.16 не показано). При Ki = 0 и Vz=l на входы X поступают сигналы кода адреса обращения.
Характеристики серийных микросхем динамических ОЗУ приведены в табл. 5.5.