Пленочные интегральные микросхемы
Второй разновидностью микросхем являются пленочные микросхемы, подразделяемые на тонкопленочные и толстопленочные. Более совершенны и шире распространены тонкопленочные микросхемы. Их выполняют на диэлектрической подложке (из стекла, ситал-ла, керамики), элементами их являются резисторы и конденсаторы. Иногда используют индуктивные элементы.
Резисторы изготавливают напылением на подложку 3 (рис. 1.11) через трафарет тонкой пленки высокоомного материала (нихром, тантал, сплав МЛТ) нужной конфигурации. Концы полученного ре-зистивного элемента 1 соединяют с пленочными контактными площадками 2, выполняемыми из металла, обладающего высокой электропроводностью (алюминий, медь, золото).
Электрическое сопротивление такого резистора может быть от 10 Ом до 1 МОм в зависимости от толщины, ширины и длины ре-зистивной полоски, а также удельного сопротивления материала. Отклонение от номинала 5 — 10 %; применяя подгонку, можно получить отклонение менее 0,1 %. Температурный коэффициент сопротивления (50 — 500)-10-6 град-1. Допустимая удельная мощность рассеяния составляет 1 — 3 Вт/см2. Благодаря малой собственной индуктивности тонкопленочные резисторы имеют частотный диапазон до 1000 МГц.
Конденсаторы выполняют на диэлектрической подложке 1 (рис. 1.12) последовательным напылением трех слоев: металл — диэлектрик — металл. Металлические слои 3, образующие обкладки конденсатора, изготовляют обычно из алюминия. В качестве диэлектрика 2 используют окись кремния, окись алюминия, боросиликатное стекло и др. Емкость такого конденсатора в зависимости от площади обкладок, толщины и диэлектрической проницаемости диэлектрика составляет от 100 до 5000 пФ при рабочем напряжении до 60 В. Температурный коэффициент емкости (35 — 400)10~в град-1, частотный диапазон до 300 — 500 МГц.
Индуктивные элементы могут быть выполнены в виде однослойных многовитковых спиралей, однако индуктивность их не превышает 20 мкГн при добротности не более 50.
На базе пленочной технологии до сих пор не удалось создать достаточно надежные транзисторы или другие активные элементы, поэтому пленочные микросхемы имеют ограниченное самостоятельное применение и большей частью составляют основу гибридных микросхем.
Рис. 1.11. Интегральный пленочный резистор
Рис. 1.12. Интегральный пленочный конденсатор