МИКРОСХЕМЫ И ИХ ПРИМЕНЕНИЕ

     

Полупроводниковые интегральные микросхемы


Наибольшее распространение получили ИС, у которых все эле­менты и межэлементные соединения выполнены в объеме и на по­верхности полупроводника. Их называют полупроводниковыми.

Для изготовления полупроводниковых микросхем используют кремниевые монокристаллические пластины диаметром не менее 30 — 60 мм и толщиной 0,25 — 0,4 мм. Элементы микросхемы — бипо­лярные и полевые транзисторы, диоды, резисторы и конденсаторы — формируют в полупроводниковой пластине методами, известными из технологии дискретных полупроводниковых приборов (селективная диффузия, эпитаксия и др.) [5]. Межсоединения выполняют напы­лением узких проводящих дорожек алюминия на окисленную (т. е. электрически изолированную) поверхность кремния, имеющую окна в пленке окисла в тех местах, где должен осуществляться контакт дорожек с кремнием (в области эмиттера, базы, коллектора тран­зистора и т. д.). Для соединения элементов микросхемы с ее выво­дами на проводящих дорожках создаются расширенные участки —контактные площадки. Методом напыления иногда изготавливают также резисторы и конденсаторы.

Рис. 1.3. Основные части микросхемы

 


Рис. 1.4. Интегральный бипо­лярный транзистор, изолиро­ванный электронно-дырочным переходом

Рис. 1.5. Интегральный много-эмиттерный транзистор


Изготовление полупроводниковых микросхем осуществляют групповым методом, при котором на одной пластине 1 (рис. 1.3) одновременно создают большое число (до 300 — 500) одинаковых функциональных структур (наборов элементов и межсоединений). Одновременной обработке подвергается до 20 пластин. После вы­полнения всех операций по формированию элементов и межсоеди­нений пластину разрезают на отдельные платы 2, называемые кри­сталлами. Каждый кристалл содержит одну функциональную струк­туру. Его закрепляют на основании корпуса 3, контактные площадки соединяют с выводами микросхемы с помощью тонких проводничков, затем на основание надевают крышку корпуса 4 и корпус герметизируют, чем обеспечивается защита кристалла от воздействий окружающей среды.




Рассмотрим теперь особенности устройства элементов полупро­водниковых микросхем, которые обусловлены необходимостью изо­ляции элементов от тела кристалла, обладающего заметной элек­трической проводимостью. Изоляцию элементов осуществляют либо с помощью дополнительного электронно-дырочного перехода, находя­щегося под обратным напряжением, либо с помощью тонкого слоя диэлектрика, например двуокиси кремния. Первый способ более прост и дешев и поэтому наиболее распространен, но он не позво­ляет получить ток утечки на тело кристалла менее 10 нА и емкость элемента по отношению .к телу кристалла менее 2пФ. Второй способ более сложен и дорог, но снижает ток утечки в тысячи раз, а емкость — в десятки раз.

Биполярные транзисторы. Структура транзистора, изолирован­ного электронно-дырочным переходом, показана на рис. 1.4. Элек­трод коллектора К расположен в интегральных транзисто­рах на верхней поверхности кристалла, там же находятся элек­троды эмиттера Э и базы Б. Чтобы в этих условиях обеспечить низкоомный путь для коллекторного тока к электроду коллектора K, под n-областью коллектора создают скрытый слой n+, обладаю­щий повышенной проводимостью. Изо тирующий переход образуется вдоль линии, разделяющей «-область коллектора и «+-область его скрытого слоя от р+-областей и р-области тела кристалла.

                                                         



Рис. 1.6. Интегральные полу­проводниковые диоды (схема соединения)

Рис. 1.7. Интегральный МДП-транзистор

Транзисторы полупроводниковых микросхем могут иметь не сколько отдельных эмиттеров при одной базе и одном коллекторе. Такие транзисторы называются многоэмиттерными. Их устройство показано на рис. 1.5, а способы использования рассмотрены в гл 4 Если в полупроводниковой микросхеме применяют диэлектриче­скую изоляцию элементов, то транзисторы имеют такую же двух­переходную структуру, как и их дискретные аналоги.

Значения параметров интегрального биполярного транзистора определяются, как обычно, концентрационным профилем структуры, площадью переходов, электрофизическими параметрами материала.


Максимальный коллекторный ток может достигать 50 мА коэффи­циент передачи тока базы от 20 до 50, обратные токи переходов менее 10 нА, максимальное коллекторное напряжение до 40 В ппе-дельная рабочая частота до 1000 МГц. Освоены способы изготов­ления транзисторных структур имеющих коэффициент передачи тока базы до нескольких тысяч [13].

Полупроводниковые диоды. Для упрощения технологического цикла диоды изготавливают на основе транзисторных структур Для быстродействующих диодов используют эмиттерный переход пои соединенном с базой коллекторе (рис. 1.6,а). Для диодов, которые должны иметь большое пробивное напряжение, используют коллек­торный переход, а эмиттер соединяют с базой (рис 1 66) Во вто­ром случае скорость переключения получается в десятки раз ниже из-за большего значения неравновесного заряда, накапливающегося не только в области базы, но и в области коллектора а также из-за большей емкости перехода.

МДП-транзисторы. Эти приборы не нужно специально изолиро­вать от тела кристалла, так как у них область «сток — канал — исток» уже изолирована от тела кристалла электронно-дырочным переходом, образующимся вдоль линии, разделяющей р-область тела кристалла от л+-области истока, л-области канала и л+-области стока, и этот переход имеет обратное смещение в рабочем режиме (рис. 1.7). Площадь, занимаемая на подложке МДП-структурой оказывается при этом в сотни раз меньше, чем у биполярных струк­тур, что позволяет получить значительно большую плотность разме­щения элементов на подложке.

Интегральные МДП-транзисторы имеют следующие значения параметров: ток стока до 10 мА, напряжение стока до 30 В вход­ное сопротивление — десятки МОм, предельная частота — сотни МГц Таким образом, интегральные МДП-транзисторы являются сравни­тельно низкочастотными элементами, что обусловлено большими межэлектродными емкостями.

Конденсаторы. В полупроводниковых микросхемах применяют в основном р — n-конденсаторы, в качестве которых используют кол­лекторный переход 1 транзисторной структуры (рис 1 8) Эмиттер-ную область в данном случае не формируют.


Изолирующий р — n-пе­реход 2 отделяет р — «- конденсатор от тела кристалла. Выводами конденсатора являются алюминиевые электроды 3, 4 Конденсаторы, один вывод которых должен быть соединен с телом кристалла, могут выполняться на основе изолирующего перехода.

Емкость р—n-конденсатора определяется площадью перехода и обычно не превышает 100 пФ. Добротность низкая — не более 10 отклонение от номинала большое — до 30%, температурный коэф­фициент емкости до 10~3 град-1. v

                                                  


Рис. 1.8. Интегральный конден­сатор                               Рис. 1.9. Диффузионный рези­стор

Малый диапазон емкостей, низкая добротность, высокий темпе­ратурный коэффициент и зависимость емкости от приложенного на­пряжения не позволяют в ряде случаев использовать р — n-конден-саторы. Тогда применяют пленочные конденсаторы типа «металл — диэлектрик — металл». Их выполняют последовательным напылением трех тонких слоев (проводящего, изолирующего и проводящего) на изолирующую пленку двуокиси кремния, находящуюся на поверхно­сти полупроводниковой пластины. Емкость таких конденсаторов до­стигает 500 пФ при отклонении от номинала не более 5 — 10%, доб­ротность — до 100, температурный коэффициент до 10~4 град-1, рабочее напряжение — до 60 В.

Применяют также конденсаторы типа МДП, у которых нижнюю обкладку образует эмиттерный слой транзисторной структуры, ди­электриком является пленка двуокиси кремния, а верхняя обклад­ка — металлическая. Вследствие большого сопротивления потерь нижней (полупроводниковой) обкладки такие конденсаторы несколь­ко уступают конденсаторам с металлическими обкладками, но проще их в изготовлении. По сравнению с парамерами р — n-конденсаторов параметры МДП-конденсаторов значительно выше.

Резисторы. Для формирования в полупроводниковой пластине области, обладающей требуемым электрическим сопротивлением, обычно используют базовый слой транзисторной структуры (рис. 1.9) и, иногда, эмиттерный или коллекторный слои.


Такие резисторы на­зываются диффузионными. Алюминиевые межсоединения 1 имеют контакт с резистивным элементом 2 через окна в изолирующей плен­ке двуокиси кремния. Электронно-дырочный переход 3 изолирует резистивный элемент от тела кристалла.

Поскольку такие параметры диффузионных слоев, как толщи­на, концентрация и распределение примеси, задаются требованиями к транзисторным структурам, необходимое сопротивление резистив-ного элемента может быть получено лишь путем выбора слоя и его ширины и длины. Эмиттерный слой, имеющий более высокую кон­центрацию примесей, используют для получения резисторов с малым сопротивлением (от 2 до 30 Ом), а базовый слой — с большим со­противлением (от 100 Ом до 20 кОм). Отклонение от номинала достигает 20%, предельная частота — до 100 МГц, максимальное рабочее напряжение 5 и 20 В соответственно и температурный ко­эффициент 1-10-4 град-1 и 1-10-3 град-1, соответственно.

В полупроводниковых микросхемах обычно применяют диффу­зионные резисторы, но если требуемый номинал сопротивления не может быть с их помощью реализован, то в качестве резистивного элемента используют дорожки из пленки высокоомного металла на­пыленные, как и межсоединения, на изолирующую пленку двуокиси кремния, покрывающую поверхность кристалла. Эти резисторы на­зываются пленочными, их устройство рассмотрено в § 1.2.2.



Рис. 1.10. Крис­талл полупровод­никовой микросхе­мы

В качестве резисторов в полупроводниковых микросхемах используют также канал МДП-транзистора. Сопротивление при этом может регулироваться изменением напряжения, подаваемого на за­твор (минимальное сопротивление около 10 Ом).

Размещение элементов, межсоединений и контактных площадок на поверхности и внутри кристалла полупроводниковой микросхемы иллюстрирует рис. 1.10. На рис. 1.10,а показана принципиальная схема функционального узла, выполненного в виде данной микросхе-мы. Это логический элемент ИЛИ-НЕ, состоящий из двух тран­зисторов Т, и Т2 и трех резисторов R,, R2 и я3.


Принцип действия этого элемента рассмотрен в гл. 4. На рис. 1.10,6 показан кристалл полупроводниковой микросхемы, представляющий собой данный функциональный узел (вид сверху). Обозначения те же что и на принципиальной схеме. Области, занятые транзисторными структу­рами, отмечены буквами Т, и Т2, выводы их эмиттеров — Э коллек­торов-K, баз -Б, пленочные резисторы Rь R2, R3 (отмечены точ­ками). Межсоединения и контактные площадки 1, 2, 3, 4, 5 отме­чены штриховкой. Область, занимаемая элементами на кристалле имеет размеры 1x1 мм. На рис l.l0.e показан разрез кристалла по А-А. Видны эмиттерная n+-область транзистора Т1 и вывод его эмиттера Э, базовая р-область и ее вывод Б, коллекторная n-область и ее вывод K, а также изолирующий слой двуокиси крем­ния на поверхности подложки (заштрихован) и пленочные резисто­ры R1 и R3 (отмечены точками).

Рассмотренная полупроводниковая микросхема имеет пять элр ментов: два транзистора и три резистора. В выпускаемых промышленностью микросхемах число элементов на кристалле значительно больше, иногда оно исчисляется десятками и даже сотнями тысяч.


Содержание раздела