СЕРИИ МИКРОСХЕМ ДЛЯ ЛИНЕЙНЫХ И ИМПУЛЬСНЫХ УСТРОЙСТВ
Промышленностью освоена широкая номенклатура серий микросхем, предназначенных для создания линейных и импульсных устройств различного назначения.
Это в первую очередь серии К101, КП8, КИ9, К122, К124, К162, К218, К228, К249, К722.
Рис. 2.18. Микросхемы серии К122
Микросхемы серий КИ8, К122 и К722 для линейных и пороговых устройств. Серии КИ8, К122 и К722 близки по составу и различаются конструктивным оформлением микросхем. Для этих серий характерна универсальность входящих в их состав микросхем. Рассмотрим схемотехнические особенности некоторых из них.
Микросхема К122УД1 является однокаскадным дифференциальным усилителем постоянного тока, принципиальная схема которого показана на рис. 2.18,а.
Основу усилителя составляют транзисторы Т} и Т2 с идентичными параметрами. Совместно с равными по сопротивлению резисторами Ri и Ri эти транзисторы образуют сбалансированную мостовую схему. В идеальном случае напряжение на диагонали моста между выводами 5 и 9 при отсутствии входного сигнала должно быть равно нулю.
Одно из важнейших достоинств дифференциальных усилителей заключается в том, что балансировка моста не нарушается и в случае синфазного воздействия на выводы 4 и 10. Обычно появление синфазного сигнала объясняется наличием наводок или других помех. Они вызывают одинаковые по амплитуде и фазе изменения напряжений на входах обоих транзисторов, а следовательно, и идентичные изменения токов через них. В результате напряжение между выводами 5 и 9 не претерпевает изменений, что свидетельствует о подавлении синфазной помехи.
Полезный сигнал обычно подается на дифференциальный вход между базовыми выводами транзисторов Т} и Т2. В этом случае входные сигналы обоих транзисторов равны по амплитуде и противоположны по фазе. Изменение тока коллектора одного из транзисторов сопровождается противофазным изменением тока второго транзистора. Как следствие, появляется и меняется в соответствии с сигналом разность напряжений между коллекторами транзисторов дифференциальной пары (выводы 5 и 9).
Кроме работы на симметричный выход микросхема К122УД1 может использоваться и с несимметричным выходом. При этом несколько ухудшается подавление синфазной помехи.
Важным элементом большинства интегральных дифференциальных усилителей является токостабилизирующий двухполюсник (генератор то-ка), подобный тому, который выполнен в рассматриваемой микросхеме на транзисторе Т3 и включен в общую эмит-терную цепь транзисторов Т1 и Т2. Двухполюсник играет важную роль в обеспечении подавления синфазной помехи и заменяет вы-сокоомный резистор, создание которого в полупроводниковых микросхемах вызывает ряд затруднений.
Если токостабилизирующий двухполюсник идеален, т. е. имеет бесконечное дифференциальное сопротивление, то воздействие синфазной помехи вызывает только приращение потенциала эмиттеров Транзисторов TI и Т2. При этом токи и потенциалы их коллекторов не изменяются. Если же токостабилизирующий двухполюсник не идеален, то приращение потенциала эмиттеров транзисторов TI и Т2 сопровождается приращением токов и потенциалов их коллекторов, т. е. появлением синфазной составляющей на выходе усилителя. При некоторой несимметрии плеч дифференциальной пары это приведет и к возникновению паразитной дифференциальной составляющей выходного напряжения. Таким образом, внутреннее дифференциальное сопротивление токостабилизирующего двухполюсника должно быть как можно больше.
Режим транзистора токостабилизирующего элемента определяется резистором R3 и делителем базового смещения, образованным резисторами R6, R4 и R5, а также транзистором Т4 в диодном включении. Транзистор T4 применен для стабилизации тока транзистора Т3 при изменении температуры.
Изменением потенциала на базе транзистора Т3 (для этого можно использовать выводы 8, 11 или 12) достигают изменения динамического диапазона усилителя, а также входного сопротивления.
Микросхему К122УД1 выпускают в трех модификациях (А, Б и В). Они различаются по значению питающего напряжения (±4В±10% и ±6,ЗВ±10%), минимальному коэффициенту усиления (15 и 24), входному сопротивлению (6 и 3 кОм), входному току (10 -и 20 мкА) и по другим параметрам.
Микросхема К122УН1 (рис. 2.18,6) — двухкаскадный усилитель переменного тока. Ее выпускают в пяти модификациях, различающихся напряжением питания (6,3 В±10% и 12,6 В±10%), минимальным коэффициентом усиления (от 250 до 800 на частоте 12 кГц и от 30 до 50 на частоте 5 МГц) и постоянным напряжением на выходе (2,4 — 3,8 В для модификаций А и Б, 7,0 — 9,6 В для остальных). Входное сопротивление 2, выходное сопротивление 1,2 — 3 кОм.
Каскад на транзисторе Т1 выполнен по схеме ОЭ. Транзистор Т2 может быть использован как в схеме ОЭ, так и в схеме ОК. Через резисторы Rt и Ra транзисторы охвачены отрицательной обратной связью, определяющей и стабилизирующей режимы по постоянному току. Для устранения обратной связи по переменному току достаточно подключить конденсатор большой емкости к выводам 5 или 11. Выводы 3 и 11 используют для соединения микросхемы с резистивными или емкостными элементами, меняющими или полностью устраняющими последовательную обратную связь в каждом каскаде, реализующими новые цепи обратной связи позволяющими регулировать режим транзисторов по постоянному току и т. д. Вывод 10 предусмотрен для подключения фильтрующих или корректирующих конденсаторов.
В зависимости от схемы включения транзистора Т2 роль нагрузки могут выполнять резисторы R7 (в схеме ОК) или R5 (в схеме ОЭ), а также внешние элементы.
Микросхема К122УН2 (рис. 2.18,е) представляет собой трех-каскадный усилитель с каскодным соединением транзисторов Г2 и Т3. Включенный по схеме ОЭ транзистор T1 охвачен обратной связью по напряжению через резистор R1.
Транзистор T1 может служить для усиления или для создания необходимого режима работы транзисторов Т2 и Т3 по постоянному току. Вывод 4 можно использовать для подачи сигнала, если для усиления использовать только транзисторы Т3 и Т2, или для подключения цепи АРУ. В последнем случае благодаря наличию в схеме резистора R4 изменение регулирующего напряжения не окажет заметного влияния на входное сопротивление усилителя и на форму его частотной характеристики.
Подключением к выводу 11 кон денсатора большой емкости обеспечивают заземление базы транзистора Т3 по переменной составляющей.
Микросхема может использоваться как с внутренней нагрузкой (резистор Rs), так и с различными по характеру внешними нагрузками, включаемыми между выводами 7 и 9.
Выпускают три модификации (А, Б, и В) микросхемы К122УН2 с коэффициентом усиления на частоте 12 кГц не менее 15, 25 и 40 и напряжением питания 4 В±10% (А) или 6,3 В ±10% (Б, В). ~
Серии КН8 и К722 содержат кроме усилительных микросхем видеоусилитель и триггер Шмитта, выпускаемые в нескольких модификациях.
Видеоусилители обеспечивают напряжение на выходе 55 или 11 В при коэффициенте усиления на частоте 12 кГц от 900 до 2000. Напряжение питания 6,3 В ±10% или 12,6 В +10 %
Модификации триггера Шмитта различаются по питающему напряжению (±3 В ±10%, ±4 В ±10%, ±6,3 В ±10%) пи входному току (20 и 40 мкА), а также по уровням входного и выходного напряжений.
Микросхемы серий КП9, К218 и К228 для линейных и импульсных устройств. Серия микросхем КН9 включает в себя два усилителя НЧ с коэффициентом усиления 2 — 5 (КН9УН1) и 7—13 (КП9УН2) на частоте 10 кГц и с верхней граничной частотой 100 кГц; дифференциальный усилитель (К119УТ1) с коэффициентом усиления 3 — 5 и рабочим диапазоном частот 5 Гц—200 кГш эмиттерный повторитель КИ9УЕ1, обеспечивающий на частоте 1 кГц коэффициент передачи не менее 0,7; видеоусилитель КП9УИ1 для усиления импульсов отрицательной полярности с длительностью от 0,3 до 500 мкс, имеющий на частоте 10 кГц коэффициент передачи 4 — 10; мультивибратор с самовозбуждением КП9ГП вырабатывающий импульсы с длительностью 7 — 25 икс и с амплитудой не менее 1,2 В; регулирующий элемент АРУ КН9МА1 с коэффициентом ослабления 2 — 8; детектор АРУ К119ДА1 с рабочим диапазоном частот 5 Гц — 40 кГц и с коэффициентом передачи на частоте 10 кГц не менее 0,6; линейный пропускатель КН9СВ1 с коэффициентом передачи не менее 0,65; чувствительный триггер Шмитта КН9ТЛ1 с порогами срабатывания и отпускания 0±0,1 В, а также коммутатор КН9КП1, активные элементы схем частотной селекции КН9СС1 и КН9СС2, диодный мост К119ПП1 и элемент блокинг-генератора КН9АГ1.
Для питания микросхем серии используются напряжения ±3, ±6,3, 12В с допуском ±10 %.
Серия К218 состоит из трех импульсных усилителей (К218УИ1 — К218УИЗ), усиливающих импульсы любой полярности длительностью 0,3 — 500 мкс с коэффициентом передачи не менее 3; двух эмиттерных повторителей К218УЕ1 и К.218УЕ2 (положительной полярности и биполярного), предназначенных для передачи импульсов длительностью 0,3 — 1,5 мкс с коэффициентом передачи более 0,8; усилителя ПЧ К218УР1 с частотным диапазоном 22,5 — 37,5 МГц и с коэффициентом усиления не менее 7; автоколебательного мультивибратора К218ГГ1 с амплитудой выходных импульсов более 3 В при частоте следования от 50 Гц до 0,6 МГц; ждущего мультивибратора К218АГ1, работающего при амплитуде входных импульсов 2,5 — 6 В (отрицательной полярности), следующих с частотой менее 250 кГц; детектора радиоимпульсов К218ДА1 с линейным участком амплитудной характеристики не менее 400 мВ и с коэффициентом передачи на несущей частоте 30 МГц от 0,5 до 1; триггера с комбинированным запуском К218ТК1. Напряжение питания микросхем серии К218 6,3 В ±10 %.
Серия К228 существенно дополняет серию К218.
Микросхемы этих серий согласованы по стыковочным параметрам и напряжению питания. Они имеют единое конструктивное оформление.
В состав серии К228 входят: три усилителя (универсальный К228УВ1, каскодный К228УВЗ и регулируемый К228УВ2) с верхней граничной частотой 60 МГц и с крутизной характеристики на этой частоте не менее 7,5 мА/В (причем регулируемый усилитель обеспечивает возможность изменения крутизны в пределах 40 дБ); балансный усилитель К228УВ4 с крутизной вольт-амперной характеристики более 5 мА/В на частоте 5 МГц, обеспечивающий разбаланс на выходе менее 3 дБ; устройство сравнения токов К228СА1 с током срабатывания не более 20 мкА; диодный ключ К228КН1, обеспечивающий отношение выходных напряжений в состояниях «Открыто» и «Закрыто» не менее 100; два диодно-рези-сторных декодирующих преобразователя К228ПП1 и К228ПП2 с управляющими напряжениями +1 и — 1 В, а также комбинированная диодно-резистивная матрица К228НК1 и конденсаторная сборка К228НЕ1 из пяти конденсаторов по 12000 пФ.
Для питания микросхем серии К228 используется напряжение ±6,3 В ±10%.
Микросхемы прерывателей и ключей. Серии К101, К124, К162, К743 составлены из микросхем, предназначенных преимущественно для коммутации слабых сигналов постоянного и переменного токов. В качестве прерывателей они применяются в разрядных ключах, преобразователях код-аналог, аналог-код и т. д.
Каждая микросхема представляет собой два идентичных n-p-n (К101, К743) или р-n-р (К124, К162) транзистора, объединенных в последовательный структурно-компенсированный ключ Как показано на примере микросхемы К101КТ1 (рис. 2.19), коммутируемую цепь подключают к эмиттерным выводам транзисторов (вы воды 3 и 7), а управляющий сигнал подают между коллекторами и базами обоих транзисторов.
Рис. 2.19. Микросхема К101КТ1 (а) и варианты ее использования: прерыватель (б), модулятор (в), составной транзистор (г)
На практике необходимо, чтобы транзисторный ключ имел возможно меньшее значение остаточного напряжения. В микросхемах рассматриваемых серий это достигается, во-первых, в результате выполнения транзисторов в едином технологическом цикле с идентичными параметрами, а во-вторых, в результате инверсного вклю чения транзисторов. Остаточные напряжения обоих транзисторов направлены встречно, взаимно компенсируясь, что и позволяет коммутировать весьма слабые сигналы.
Дополнительная регулировка остаточного напряжения возмож на с помощью переменного резистора, включаемого в колчекторную цепь. Такая схема может найти применение даже в высококачественных ключах эталонных напряжений. При этом следует помнить, что чем больше регулировочное сопротивление, тем уже диапазон переключаемых токов, в котором проявляются достоинства схемы.
Микросхемы прерывателей находят применение и в других электронных устройствах.
В табл. 2.5 приведены основные параметры интегральных прерывателей.
Таблица 2.5
Микросхема |
Uээ.ост, мкВ |
Iээ.ут, нА |
Rээ. Ом |
Uкб.обр, |
Uэб.обр, В |
Тип проводимости |
К101КТ1А |
50 |
10 |
100 |
3,5 |
6,5 |
n-р-n |
К101КТ1Б |
150 |
10 |
100 |
3,5 |
6,5 |
n-р-n |
К101КТ1В |
50 |
10 |
100 |
3,5 |
3,5 |
n-р-n |
К.101КТ1Г |
150 |
10 |
100 |
3,5 |
3,5 |
n-р-n |
К124КТ1 |
300 |
50 |
100 |
— |
30 |
р-n-р |
K162KTIA |
100 |
45 |
100 |
20 |
30 |
р-n-р |
К162КТ1Б |
200 |
45 |
100 |
20 |
30 |
р-n-р |
K743KTIA |
50 |
40 |
100 |
3,5 |
6,5 |
n-р-n |
К743КТ1Б |
150 |
40 |
100 |
3,5 |
6,5 |
n-р-n |
К743КТ1В |
50 |
40 |
100 |
3,5 |
3,5 |
n-р-n |
К743КТ1Г |
150 |
40 |
100 |
3,5 |
3,5 |
n-р-n |
Серия 249 состоит из одной микросхемы 2КЭ491, выпускаемой в четырех модификациях (А — Г). Микросхема содержит два опто-электронных ключа (рис. 2.20,а). Каждый из ключей состоит из светодиода и фототранзистора. Особенности таких устройств — гальваническая развязка входной и выходной цепей и однонаправленность передачи сигналов. Для подобных оптоэлектронных ключей характерно сопротивление изоляции, превышающее 108 — 1014 Ом. Практически идеальная развязка обеспечивает ряд возможностей, не реализуемых в чисто электронных устройствах. Например, с помощью низких напряжений можно управлять высоковольтными цепями, можно связать цепи, работающие из раз-личных частотах, и т. д. Применение оптоэлектронных ключей способствует значительному улучшению помехозащищенности устройств, так как оптические связи разрывают цепи проникновения помех. Еще одно достоинство оптоэлектронных ключей — возможность их совместной работы практически со всеми логическими микросхемами.
Ключ на микросхеме 2КЭ491 может работать на двухпроводную линию (в режиме «оторванной» базы). Если необходимо обеспечить высокое быстродействие, такой режим неприемлем и целесообразно включить резистор параллельно эмиттерному переходу.
Это приведет к уменьшению времени рассасывания заряда в базе фототранзистора при выходе из режима насыщения. Например, подключение резистора с сопротивлением 3,9 кОм сокращает время выключения вдвое.
Коэффициент передачи тока любого из ключей не менее 0,5 для микросхем модификаций А и В и не менее 0,3 для микросхем Модификаций Б и Г.
Рис. 2.20. Оптоэлектронный ключ (а) и зависимости его параметров от температуры (б)
Время нарастания и спада с учетом времени задержки не более 3 мкс при нагрузке 100 Ом. Напряжение насыщения фототранзистора не более 0,3 В при коллекторном токе 3 мА для микросхем модификаций А и В и при коллекторном токе 2 мА—для остальных. Напряжение на светодиоде 1,1 — 1,3 В при прямом токе 10 мА. Проходная емкость менее 5 пФ.
У оптоэлектронных ключей 2КЭ491 максимальное остаточное напряжение на отдельном фототранзисторе не превышает 1 мВ. Это позволяет при встречно-параллельном включении получать остаточное напряжение менее 0,2 мВ.
Импульсные характеристики оптоэлектронных ключей существенно зависят от температуры. На рис. 2.20,6 показаны температурные зависимости времени задержки нарастания выходного тока (кривая 1), времени нарастания импульса тока (кривая 2), времени задержки спада импульса тока (кривая 3) и времени спада импульса тока (кривая 4).
Микросхему 2КЭ491 применяют преимущественно в качестве прерывателя. Кроме того, она может быть использована для модуляции аналоговых сигналов, для управления мощными транзисторами и т. д. Фототранзисторы микросхемы можно включить по схеме составного транзистора и обеспечить коэффициент усиления тока до 100.
Большие перспективы открывает применение пар «светодиод—фототранзистор» в дифференциальных усилителях. В [1] показано, что в таком усилителе коэффициент подавления синфазной помехи достигает 2?0 дБ.